Asia-Pacific Region Intelligence Center
올해 노벨물리학상에 ‘AI 학습 기술’ 기여 존 홉필드∙제프리 힌턴 본문
올해 노벨물리학상에 ‘AI 학습 기술’ 기여 존 홉필드∙제프리 힌턴
CIA Bear 허관(許灌) 2024. 10. 9. 09:24
올해 노벨물리학상은 기계의 인공지능(AI) 기반 학습을 가능케 하는 ‘머신러닝(machine learning)’의 토대를 마련한 학자 2명에게 돌아갔습니다.
스웨덴 왕립과학원은 8일 존 홉필드 미국 프린스턴대학 명예교수와 제프리 힌턴 캐나다 토론토대학 명예교수를 올해 수상자로 선정했다고 밝혔습니다.
왕립과학원은 이들이 “물리학적 도구를 이용해 오늘날의 강력한 머신러닝의 기초가 되는 방법들을 개발했다”며, “인공신경망을 기반으로 한 머신러닝은 현재 과학과 공학, 일상생활에 혁명을 일으키고 있다”고 평가했습니다.
머신러닝이란 AI가 자료를 스스로 분석하고 이를 토대로 결론을 도출하는 기술의 일종으로, 인간의 프로그래밍 없이 경험을 기반으로 스스로를 개선해 나가는 기술입니다.
미 구글사 출신으로 AI계의 대부로 알려진 힌턴 명예교수는 수상이 확정된 뒤 기자들에게 AI의 발달은 “의료와 같은 많은 분야에서 멋진 일이 될 것”이라면서도, “하지만 우리는 여러 나쁜 결과에 대해서도 우려해야 한다”며 통제불능 상태의 AI 등을 경계해야 한다고 말했습니다.
VOA 뉴스
‘AI 대부’에 노벨물리학상
美 존 홉필드, 英 제프리 힌턴… AI 핵심인 ‘머신러닝’ 기초 확립
올해 노벨 물리학상은 오늘날 인공지능(AI)의 시대를 연 인공 신경망 연구로 기계 학습(머신 러닝)과 심층 학습(딥 러닝)의 토대를 놓은 이들에게 수여됐다. ‘AI의 겨울’로 불리는 1970~2000년 암흑기에서 벗어나고 챗GPT로 대표되는 생성형 AI로 꽃을 피우는 데 기여한 공로로 AI 연구자에게 사상 첫 노벨상이 주어졌다는 평가다.
스웨덴 왕립과학원 노벨위원회는 8일(현지 시각) 존 홉필드(91) 미국 프린스턴대 교수와 제프리 힌턴(77) 캐나다 토론토대 교수를 노벨 물리학상 수상자로 선정했다고 발표했다. ‘AI의 대부’로 불리는 힌턴 교수와 홉필드 교수의 이번 수상은 물리학계에서도 예상 밖이라는 반응이다. 노벨위원회는 “신소재 개발을 비롯해 물리학의 거의 모든 분야에서 인공 신경망이 분석 도구로 활용되고 있고, 과학 전반과 일상생활에 혁명을 일으키고 있다”며 “이들의 연구로 인류는 다양한 문제 해결의 돌파구를 마련했다”고 했다.
홉필드 교수는 AI 학습의 기본이 되는 연관 기억의 원리를 1982년에 인공 신경망 연구에 처음으로 적용했다. 예컨대 사람의 경우 특정 단어(사장)가 갑자기 떠오르지 않고 뒤 글자(장)만 생각날 때 ‘가장’ ‘도장’ 등을 연상하며 기억하려 애쓰는 것처럼, 컴퓨터에서 데이터(패턴)가 불완전할 경우 기존에 저장된 패턴 중에서 가장 유사한 것으로 찾아가는 방식을 제시한 것이다.
‘AI 4대 천왕’으로 꼽히는 힌턴 교수는 심층 학습의 개념을 확립했다. 예컨대 AI가 수천만 장의 사진을 통해 개와 고양이를 구별하는 학습을 할 때 인간 뇌의 정보 처리 방식처럼 단계를 세분화해 깊이를 더하는 심층 신경망을 고도화한 것이다.
홉필드, 힌턴 교수의 연구는 오늘날 챗GPT로 대표되는 생성형 AI의 기반이 됐다. 예를 들면 2016년 이세돌 9단을 이긴 바둑 AI ‘알파고’를 개발한 딥마인드는 힌턴의 제자들이 세운 회사다.
올해 노벨 물리학상 수상자로 선정된 홉필드 교수는 물리학과 생물학의 경계를 넘나드는 연구자이고, 힌턴 교수는 컴퓨터 과학자이다. 정통 물리학자로 꼽히지 않는 이들이 물리학계 최고의 영예인 노벨 물리학상 수상자로 선정된 것에 대해 의외라는 반응도 있다. 하지만 이들의 연구에는 물리학의 원리가 담겨 있고, 이들의 연구 성과는 물리학 전반에 혁신을 가져왔다는 평가를 받는다.
예컨대 홉필드 교수가 1982년에 내놓은 홉필드 네트워크는 분자 물리학의 원리에서 영감을 받아 컴퓨터도 정보를 기억하고 되찾을 수 있다는 것을 처음으로 증명한 모델이다. 이를 통계 물리학을 활용해 고도화한 인물이 힌턴 교수다.
결국 이들이 뉴런(신경세포)과 뉴런 간 연결부인 시냅스를 통해 신호를 보내는 인간 뇌의 신경망을 모방한 인공 신경망을 확립하고, 여기에서 더 나아가 AI 학습의 핵심인 머신 러닝(기계 학습)과 딥 러닝(심층 학습)의 토대를 놓은 것이다.
홉필드, 힌턴 교수는 초기 연구 단계에서 회의적인 반응을 얻었다는 공통점이 있다. 특히 AI 연구에 대한 관심이 드물었던 1980년대부터 AI 연구에 뛰어든 힌턴은 두 번의 ‘AI 겨울’을 극복한 것으로 유명하다. ‘AI 겨울’은 AI에 대한 자금과 관심이 급감한 불황기를 의미한다. 1980년대 초반과 1990년대 초반 두 번의 겨울이 찾아왔다. 이때 특히 힌턴 교수가 연구하던 인공 신경망은 상용화 가능성이 낮아 학계의 외면을 받았다.
힌턴 교수는 이날 노벨상위원회와의 인터뷰에서 “인류는 지금까지 우리 자신보다 더 똑똑한 기술을 가진 적이 없었다”며 “앞으로 AI가 효율성과 생산성을 더 크게 높일 수 있을 것이고, 우리 삶에 큰 영향을 끼칠 것”이라고 했다.
2013년 구글로 옮겨 부사장까지 오른 힌턴 교수는 지난해 4월 구글을 떠나 AI의 위험성을 설파하기 시작했다. 그는 구글을 떠난 이유가 AI의 위험성 때문이라며 AI 기술의 위험성을 지속적으로 경고하고 있다.
지금까지 전통적인 물리학 연구가 주로 수상한 노벨 물리학상이 AI 연구에 주어진 것에 대해 학계에서는 파격으로 받아들이고 있다. 이번 결정은 AI가 물리학의 지평을 넓히는 계기가 될 것이라는 평가도 나온다. 실제 AI는 입자 물리학과 물리 관련 통계 등에 활발히 활용되고 있다.
조정효 서울대 교수는 “두 수상자의 연구 성과는 과거 우리가 상상할 수 없었던 AI로 나아가는 데 기초가 됐다”며 “AI 관련 연구자가 처음으로 노벨상 수상자로 선정된 데는 최근 AI의 막대한 영향력을 고려한 것으로 보인다”고 했다.
☞머신 러닝·딥 러닝
머신 러닝(Machine Learning)
사람이 학습하듯 컴퓨터에도 데이터를 주고 학습하게 함으로써 새로운 지식을 얻어내는 알고리즘. 텍스트나 숫자 등 구조화된 데이터를 통해 인간이 묻는 질문에 답을 하거나 주식시장을 분석하고 예측하는 등 다양하게 활용되고 있다.
딥 러닝(Deep Learning)
인공지능 컴퓨터를 학습시키는 방법 중 하나로 컴퓨터가 사람처럼 생각하고 배울 수 있도록 한 기술이다. 사진·동영상·소리 등 비정형 데이터로도 학습할 수 있으며, 이미지·음성 인식, 자율 주행, 번역 등에 활용된다.
‘인공지능의 아버지’ 힌턴, 노벨 물리학상 공동 수상
‘인공지능의 아버지’로 불리는 제프리 E. 힌턴이 인공 신경망 훈련과 현대 머신러닝의 기초를 다진 공로로 노벨 물리학상을 수상했다.
스톡홀름의 스웨덴 왕립과학원은 8일(현지시각) 힌턴이 동료 과학자인 존 J. 홉필드와 1100만 크로나 (약 14억7900만 원)의 상금을 나누게 될 것이라고 발표했다.
두 학자의 연구는 1980년대에 시작되어 현재의 인공지능 붐을 가능하게 했으며, 이는 컴퓨팅 파워의 급증과 방대한 데이터 덕분에 이루어졌다. 그러나 최근 힌턴은 인공지능이 지나치게 강력해질 수 있다는 경고를 해오고 있다.
홉필드는 데이터를 통해 이미지와 기타 패턴을 저장하고 재구성할 수 있는 연상 기억 장치를 개발했으며, 힌턴은 인간 뇌의 작동 방식을 모방하는 기계학습 소프트웨어인 신경망의 초기 연구로 인해 인공지능 분야의 대부 중 한 명으로 알려졌다.
그는 1983년 통계 확률을 사용하는 첫 신경망 중 하나인 볼츠만 기계를 공동 발명했으며, 신경망의 연결 강도를 업데이트하는 기술이 이 소프트웨어에 뛰어난 학습 능력을 부여할 수 있다는 것을 입증하는 중요한 논문을 공동 집필했다.
힌턴은 스톡홀름에 모인 기자들에게 전화로 "정말 놀랍다. 이런 일이 일어날 줄은 몰랐다."라고 소감을 밝혔다.
힌턴은 AI의 위험성을 경고하면서도 그 이점을 강조해왔다. 그는 지난해 구글 AI 연구팀에서 물러나 AI 개발이 너무 빠르게 진행될 때 발생할 수 있는 위험성에 대해 자유롭게 이야기할 수 있게 되었다.
그는 개빈 뉴섬 캘리포니아 주지사가 거부한 법안을 지지했는데, 이 법안은 AI 개발자가 기술로 인해 발생한 심각한 피해에 대해 책임을 지도록 하는 법안이었다.
힌턴은 기자 회견에서 자신의 연구에 후회가 있냐는 질문에 “같은 상황이라면 다시 같은 선택을 할 것이다. 하지만 결과적으로 우리보다 더 지능적인 시스템들이 통제권을 장악할 가능성에 대해 걱정된다.”라고 답했다.
힌턴은 뇌가 데이터를 처리하는 방식을 모방한 신경망이 "의료 분야와 같은 많은 면에서 훌륭할 것"이라면서도, "이것들이 통제 불능 상태에 빠질 가능성을 포함한 여러 나쁜 결과들이 우려된다"고 경고했다.
'Guide Ear&Bird's Eye > 21세기 동아시아인 노벨상' 카테고리의 다른 글
한강, 한국인 최초 노벨문학상 수상…“역사적 트라우마에 맞선 강렬한 시적 산문” (0) | 2024.10.11 |
---|---|
AI, 노벨화학상도 탔다…'구글 딥마인드' CEO 등 셋 공동 수상 (0) | 2024.10.09 |
2024 노벨생리의학상에 ‘유전자 조절’ 요소 발견 앰브로스∙러브컨 교수 (0) | 2024.10.08 |
2023 노벨 경제학상에 ‘성별 임금 격차’ 등 연구 클라우디아 골딘 교수 (0) | 2023.10.10 |
이란 여성 인권운동가 모하마디, 노벨평화상 수상 (0) | 2023.10.07 |